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Abstract: - In this paper, the Euler and Navier-Stokes equations are solved, according to the finite volume 
formulation and symmetrical structured discretization, applied to the problem of a blunt body in three-
dimensions. The work of Gaitonde is the reference one to present the fluid dynamics and Maxwell equations of 
electromagnetism based on a conservative and finite volume formalisms. The MacCormack and the Jameson 
and Mavriplis symmetrical schemes are applied to solve the conserved equations. Two types of numerical 
dissipation models are applied, namely: Mavriplis and Azevedo. A spatially variable time step procedure is 
employed aiming to accelerate the convergence of the numerical schemes to the steady state solution. The 
results have proved that, when an induced magnetic field is imposed, an increase in the shock standoff distance 
is observed, which guarantees a minor increase in the temperature at the blunt body nose. 
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1 Introduction 
The effects associated with the interaction of 
magnetic forces with conducting fluid flows have 
been profitably employed in several applications 
related to nuclear and other ([1]) technologies and 
are known to be essential in the explanation of 
astrophysical phenomena. In recent years, however, 
the study of these interactions has received fresh 
impetus in the effort to solve the problems of high 
drag and thermal loads encountered in hypersonic 
flight. The knowledge that electrical and magnetic 
forces can have profound influence on hypersonic 
flowfields is not new ([2-3]) – note increased shock-
standoff and reduced heat transfer rates in 
hypersonic flows past blunt bodies under the 
application of appropriate magnetic fields. The 
recent interest stems, however, from new revelations 
of a Russian concept vehicle, known as the AJAX 
([4]), which made extensive reference to 
technologies requiring tight coupling between 
electromagnetic and fluid dynamic phenomena. A 
magnetogasdynamic (MGD) generator was 
proposed ([5]) to extract energy from the incoming 
air while simultaneously providing more benign 
flow to the combustion components downstream. 
The extracted energy could then be employed to 
increase thrust by MGD pumping of the flow exiting 
the nozzle or to assist in the generation of a plasma 
for injection of the body. This latter technique is 
known to not only reduce drag on the body but also 
to provide thermal protection ([6]). 

 In addition to daunting engineering challenges, 
some of the phenomena supporting the feasibility of 
an AJAX type vehicle are fraught with controversy 
(see, for example, [7]). Resolution of these issues 
will require extensive experimentation as well as 
simulation. The latter approach requires integration 
of several disciplines, including fluid dynamics, 
electromagnetics, chemical kinetics and molecular 
physics amongst others. This paper describes a 
recent effort to integrate the first two of these, 
within the assumptions that characterize ideal and 
non-ideal magnetogasdynamics. 
 In this paper, the Euler and Navier-Stokes 
equations are solved, according to a finite volume 
formulation and symmetrical structured 
discretization, applied to the problem of a blunt 
body in three-dimensions. The work of [8] is the 
reference one to present the fluid dynamics and 
Maxwell equations of electromagnetism based on a 
conservative and finite volume formalisms. The [9] 
and the [10] symmetrical schemes are applied to 
solve the conserved equations. Two types of 
numerical dissipation models are applied, namely: 
[11-12]. A spatially variable time step procedure is 
employed aiming to accelerate the convergence of 
the numerical schemes to the steady state solution. 
Effective gains in terms of convergence acceleration 
are observed with this technique ([13-14]). 
 The results have proved that, when an induced 
magnetic field is imposed, an increase in the shock 
standoff distance is observed, which guarantees a 
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minor increase in the temperature at the blunt body 
nose (minor armor problems). 
 
2 Formulation to a Flow Submitted to 
a Magnetic Field 
 The Navier-Stokes equations to a flow submitted 
to a magnetic field in a perfect gas formulation are 
implemented on a finite volume context and three-
dimensional space. The Euler equations are obtained 
by disregarding of the viscous vectors. These 
equations in integral and conservative forms can be 
expressed by: 
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where: Q is the vector of conserved variables, V is 
the computational cell volume, F



 is the complete 
flux vector, n  is the unity vector normal to the flux 
face, S is the flux area, Ee, Fe and Ge are the 
convective flux vectors or the Euler flux vectors 
considering the contribution of the magnetic field in 
the x, y and z directions, respectively, and Ev, Fv and 
Gv are the viscous flux vectors considering the 
contribution of the magnetic field in the x, y and z 
directions, respectively. The unity vectors i



, j


 and 

k


 define the system of Cartesian coordinates. The 
vectors Q, Ee, Fe, Ge, Ev, Fv and Gv can be defined, 
according to [8], as follows: 





































ρ
ρ
ρ
ρ
ρ

=

z

y

x

B
B
B

Z
w
v
u

Q , ( ) ( )





































−
−

µ•−+ρ
µ−ρ
µ−ρ
µ−+ρ

ρ

=

xz

xy

xMb

Mzxb

Myxb

M
2
xb

2

e

wBuB
vBuB

0
BBVRuPZ

BBRuw
BBRuv
BRPu

u

E  ; 

(2) 

 ( ) ( )





































−

−
µ•−+ρ
µ−ρ
µ−+ρ
µ−ρ

ρ

=

yz

yx

yMb

Mzyb

M
2
yb

2
Myxb

e

wBvB
0

uBvB
BBVRvPZ

BBRvw
BRPv
BBRuv

v

F  ,

( ) ( )





































−
−

µ•−+ρ
µ−+ρ
µ−ρ
µ−ρ

ρ

=

0
vBwB
uBwB

BBVRwPZ
BRPw
BBRvw
BBRuw

w

G

zy

zx

zMb

M
2
zb

2
Mzyb

Mzxb

e  ,          (3) 

( )



























































µ∂

∂
−








µ∂

∂
σ




















µ∂

∂
−








µ∂

∂
σ

−−τ+τ+τ
τ
τ
τ

=

σ

σ

M

x

M

z

M

x

M

y

xJxxzxyxx

xz

xy

xx

v

B
z

B
x

11

B
y

B
x

11
0

qqwvu

0

E

Re

Re

Re
Re
Re
Re

, ,

( )






























































µ∂

∂
−








µ∂

∂
σ




















µ∂

∂
−








µ∂

∂
σ

−−τ+τ+τ
τ
τ
τ

=

σ

σ

M

y

M

z

M

y

M

x

yJyyzyyxy

yz

yy

xy

v

B
z

B
y

11
0

B
x

B
y

11
qqwvu

0

F

Re

Re

Re
Re
Re
Re

, ,      (4) 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel, Amilcar Porto Pimenta

E-ISSN: 2224-2880 568 Issue 6, Volume 11, June 2012



 
( )






























































µ∂

∂
−








µ∂

∂
σ

















µ∂

∂
−








µ∂

∂
σ

−−τ+τ+τ
τ
τ
τ

=

σ

σ

0

B
y

B
z

11

B
x

B
z

11
qqwvu

0

G

M

z

M

y

M

z

M

x

zJzzzyzxz

zz

yz

xz

v

Re

Re

Re
Re
Re
Re

, ,    (5) 

in which: ρ is the fluid density; u, v and w are the 
Cartesian components of the velocity vector in the x, 
y and z directions, respectively; Z is the flow total 
energy considering the contribution of the magnetic 
field; Bx, By and Bz are the Cartesian components of 
the  magnetic field vector active in the x, y and z 
directions, respectively; P is the pressure term 
considering the magnetic field effect; Rb is the 
magnetic force number or the pressure number; µM 
is the mean magnetic permeability, with the value 
4πx10-7 T.m/A to the atmospheric air; V



 is the flow 
velocity vector in Cartesian coordinates; B



 is the 
magnetic field vector in Cartesian coordinates; the 
τ’s are the components of the viscous stress tensor 
defined at the Cartesian plane; qx, qy and qz are the 
components of the Fourier heat flux vector in the x, 
y and z directions, respectively; qJ,x, qJ,y and qJ,z are 
the components of the Joule heat flux vector in the x, 
y and z directions, respectively; Reσ is the magnetic 
Reynolds number; and σ is the electrical 
conductivity. 

 The viscous stresses, in N/m2, are determined, 
according to a Newtonian fluid model, by: 
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where µ is the fluid molecular viscosity. In this 
work, the empiric formula of Sutherland was 
employed to the calculation of the molecular 
viscosity (details in [15]). 

 Z is the total energy defined by: 
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 The pressure term is expressed by: 
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 The magnetic force number or pressure number 
is determined by: 
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 The laminar Reynolds number is defined by: 

 
∞
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µ
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in which “∞” represents freestream properties, V∞ 
represents the characteristic flow velocity and L is a 
characteristic length of the studied configuration. 
 The magnetic Reynolds number is calculated by: 

 ∞∞∞σ σµ= ,Re MLV .                                     (13) 

 The components of the Fourier heat flux vector 
are expressed by: 
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with: 

 kCp∞µ=Pr  = 0.72, is the laminar Prandtl 
number;                                                                (16) 

 
ργ

= ∞
∞ p

VM , is the freestream Mach number;                                                      

(17) 

 γ is the ratio of specific heats to a perfect gas, 
with a value of 1.4 to atmospheric air.  

 The components of the Joule heat flux vector, 
which introduces the non-ideal character of the 
mixed Navier-Stokes / Maxwell equations, are 
determined by: 
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3  [9] Structured Algorithm in Three-
Dimensions 
Employing finite volumes and applying the Green 
theorem to Eq. (1), one writes: 
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In the discretization of the surface integral, Eq. (21) 
can be rewritten as: 
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Discretizing Equation (22) in time employing the 
explicit Euler method, results in: 
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 The time integration is now divided in two steps: 
one predictor and another corrector. In the predictor 
step, the convective flux terms are calculated using 
the properties of the forward cell in relation to the 
flux interface. The viscous terms are discretized in a 
symmetrical form. In the corrector step, the 
properties of the backward cell in relation to the flux 
interface are employed. The viscous terms are again 
calculated in a symmetrical form. With this 
procedure, the scheme is of second order accuracy 
in space and time. Hence, the [9] algorithm, based 
on a finite volume formulation, is described as 
follows: 
Predictor step: 
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Corrector step: 
 

( ) ( )[ ]{ +−∆−=∆ −−−
+

k,2/1j,ixk,2/1j,ivk,1j,iek,j,ik,j,i
1n
k,j,i SEEVtQ  

( ) ( )[ ] ( ) ( )[ ] k,2/1j,izk,2/1j,ivk,1j,iek,2/1j,iyk,2/1j,ivk,1j,ie SGGSFF −−−−−− −+−+

( ) ( )[ ] ( ) ( )[ ]
k,j,2/1iyk,j,2/1ivk,j,iek,j,2/1ixk,j,2/1ivk,j,ie SFFSEE

++++ −+−+

( ) ( )[ ] ( ) ( )[ ] k,2/1j,ixk,2/1j,ivk,j,iek,j,2/1izk,j,2/1ivk,j,ie SEESGG ++++ −+−+

( ) ( )[ ] ( ) ( )[ ] k,2/1j,izk,2/1j,ivk,j,iek,2/1j,iyk,2/1j,ivk,j,ie SGGSFF ++++ −+−+

( ) ( )[ ] ( ) ( )[ ]
k,j,2/1iyk,j,2/1ivk,j,1iek,j,2/1ixk,j,2/1ivk,j,1ie SFFSEE

−−−−−− −+−+

( ) ( )[ ] ( ) ( )[ ] 2/1k,j,ix2/1k,j,iv1k,j,iek,j,2/1izk,j,2/1ivk,j,1ie SEESGG −−−−−− −+−+

( ) ( )[ ] ( ) ( )[ ] 2/1k,j,iz2/1k,j,iv1k,j,ie2/1k,j,iy2/1k,j,iv1k,j,ie SGGSFF −−−−−− −+−+

( ) ( )[ ] ( ) ( )[ ]
2/1k,j,iy2/1k,j,ivk,j,ie2/1k,j,ix2/1k,j,ivk,j,ie SFFSEE

++++ −+−+

( ) ( )[ ] } 1n
2/1k,j,iz2/1k,j,ivk,j,ie SGG +

++−+ ;           (26) 

( )1n
kji

1n
kji

n
kji

1n
kji QQQ50Q +++ ∆++= ,,,,,,,, . .                 (27) 
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With the intent of guaranteeing numerical stability 
to the [9] scheme, in its three-dimensional version, 
an artificial dissipation operator of second and 
fourth differences ([16-17]) is subtracted from the 
flux terms of the right side (RHS, “Right Hand 
Side”) in the corrector step, aiming to eliminate 
instabilities originated from shock waves and due to 
the field stability. The operator is of the following 
type: )(

,,
)(
,,,,

4
kji

2
kjikji ddD −= , defined in section 4.1. 

 
4  [10] Structured Algorithm in Three-
Dimensions 

 Equation (1) can be rewritten following a 
structured spatial discretization context ([10, 18]) as: 

 ( ) 0QCdtQVd kjikjikji =+ )( ,,,,,, ,                 (28) 

where: 

 ( ) ( )[ ] ( ){ } +−+=
−−− k,2/1j,ixk,2/1j,ivk,1j,iek,j,iek,j,i SEEE5.0)Q(C                

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
k,2/1j,ik,2/1j,i zk,2/1j,ivk,1j,iek,j,ieyk,2/1j,ivk,1j,iek,j,ie SGGG5.0SFFF5.0

−− −−−− −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
k,j,2/1ik,j,2/1i yk,j,2/1ivk,j,1iek,j,iexk,j,2/1ivk,j,1iek,j,ie SFFF5.0SEEE5.0

++ ++++ −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
k,2/1j,ik,j,2/1i xk,2/1j,ivk,1j,iek,j,iezk,j,2/1ivk,j,1iek,j,ie SEEE5.0SGGG5.0

++ ++++ −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
k,2/1j,ik,2/1j,i zk,2/1j,ivk,1j,iek,j,ieyk,2/1j,ivk,1j,iek,j,ie SGGG5.0SFFF5.0

++ ++++ −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
k,j,2/1ik,j,2/1i yk,j,2/1ivk,j,1iek,j,iexk,j,2/1ivk,j,1iek,j,ie SFFF5.0SEEE5.0

−− −−−− −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
2/1k,j,ik,j,2/1i x2/1k,j,iv1k,j,iek,j,iezk,j,2/1ivk,j,1iek,j,ie SEEE5.0SGGG5.0

−− −−−− −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
2/1k,j,i2/1k,j,i z2/1k,j,iv1k,j,iek,j,iey2/1k,j,iv1k,j,iek,j,ie SGGG5.0SFFF5.0

−− −−−− −++−++

( ) ( )[ ] ( ){ } ( ) ( )[ ] ( ){ }
2/1k,j,i2/1k,j,i y2/1k,j,iv1k,j,iek,j,iex2/1k,j,iv1k,j,iek,j,ie SFFF5.0SEEE5.0

++ ++++ −++−++

( ) ( )[ ] ( ){ }
2/k,j,iz2/1k,j,iv1k,j,iek,j,ie SGGG5.0

+++ −++                     (29) 

is the approximation to the flux integral of Eq. (1). 
In this work, one adopts that, for example, the flux 
vector Ee at the flux interface (i,j-1/2,k) is obtained 
by the arithmetical average between the Ee vector 
calculated at the cell (i,j,k) and the Ee vector 
calculated at the cell (i,j-1,k). The viscous flux 
vectors are calculated in a symmetrical form as 
demonstrated in section 5. 
 The spatial discretization proposed by the 
authors is equivalent to a symmetrical scheme with 
second order accuracy, on a finite difference context. 
The introduction of an artificial dissipation operator 
“D” is necessary to guarantee the scheme numerical 
stability in presence of, for example, uncoupled 
odd/even solutions and non-linear stabilities, as 
shock waves. Equation (28) can, so, be rewritten as: 

( ) [ ] 0QDQCdtQVd kjikjikjikji =−+ )()( ,,,,,,,, . (30) 

 The time integration is performed by a hybrid 
Runge-Kutta method of five stages, with second 
order accuracy, and can be represented in general 
form as: 

( ) ( )[ ]
)(
,,

)(
,,

)(
,,

)(
,,,,,,

)(
,,

)(
,,

)(
,,

)(
,,

l
kji

1n
kji

m
kji

1l
kjikjikjil

0
kji

l
kji

n
kji

0
kji

QQ

QDQCVtQQ

QQ

=

−∆α−=

=

+

− , (31) 

 
where: l = 1,...,5; m = 0 until 4; α1 = 1/4, α2 = 1/6, 
α3 = 3/8, α4 = 1/2 and α5 = 1. [10] suggest that the 
artificial dissipation operator should be evaluated 
only in the first two stages as the Euler equations 
were solved (m = 0, l = 1 and m = 1, l = 2). [19] 
suggest that the artificial dissipation operator should 
be evaluated in alternated stages as the Navier-
Stokes equations were solved (m = 0, l = 1, m = 2, l 
= 3 and m = 4, l = 5). These procedures aim CPU 
time economy and also better damping of the 
numerical instabilities originated from the 
discretization based on the hyperbolic 
characteristics of the Euler equations and the 
hyperbolic/parabolic characteristics of the Navier-
Stokes equations. 
 
4.1 Artificial dissipation operator 
The artificial dissipation operator implemented in 
the [9-10] schemes has the following structure: 

 ( ) ( ) ( )k,j,i
)4(

k,j,i
)2(

k,j,i QdQdQD −= ,            (32) 

where: 

 ( ) ( )( )k,j,ik,1j,ik,1j,ik,j,i
)2(

k,2/1j,ik,j,i
)2( QQAA5.0Qd −+ε= −−−

( )( ) ( )( )k,j,ik,1j,ik,1j,ik,j,i
)2(

k,2/1j,ik,j,ik,j,1ik.,j,1ik,j,i
)2(

k,j,2/1i QQAA5.0QQAA5.0 −+ε+−+ε+ ++++++                   

( )( ) ( )( )k,j,i1k,j,i1k,j,ik,j,i
)2(

2/1k,j,ik,j,ik,j,1ik,j,1ik,j,i
)2(

k,j,2/1i QQAA5.0QQAA5.0 −+ε+−+ε+ −−−−−−

( )( )k,j,i1k,j,i1k,j,ik,j,i
)2(

2/1k,j,i QQAA5.0 −+ε+ +++ ,                        (33) 

named undivided Laplacian operator, is responsible 
by the numerical stability in the presence of shock 
waves; and 

 ( ) ( )( )k,j,i
2

k,1j,i
2

k,1j,ik,j,i
)4(

k,2/1j,ik,j,i
)4( QQAA5.0Qd ∇−∇+ε= −−−

( )( ) ( )( )k,j,i
2

k,1j,i
2

k,1j,ik,j,i
)4(

k,2/1j,ik,j,i
2

k,j,1i
2

k,j,1ik,j,i
)4(

k,j,2/1i QQAA5.0QQAA5.0 ∇−∇+ε+∇−∇+ε+ ++++++

( )( ) ( )( )k,j,i
2

1k,j,i
2

1k,j,ik,j,i
)4(

2/1k,j,ik,j,i
2

k,j,1i
2

k,j,1ik,j,i
)4(

k,j,2/1i QQAA5.0QQAA5.0 ∇−∇+ε+∇−∇+ε+ −−−−−−

( )( )k,j,i
2

1k,j,i
2

1k,j,ik,j,i
)4(

2/1k,j,i QQAA5.0 ∇−∇+ε+ +++ ,                     (34) 
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named bi-harmonic operator, is responsible by the 
background stability (for example: instabilities 
originated from uncoupled odd/even solutions). In 
this last term, 

( ) ( ) ( ) ( )+−+−+−+−=∇ −++− k,j,ik,j,1ik,j,ik,1j,ik,j,ik,j,1ik,j,ik,1j,ik,j,i
2 QQQQQQQQQ

( ) ( )k,j,i1k,j,ik,j,i1k,j,i QQQQ −+−+ +− .                           (35) 

In the d(4) operator, kji
2Q ,,∇  is extrapolated from 

the value of the real neighbor cell every time that it 
represent a ghost cell. The ε terms are defined, for 
instance, as: 

( )k,1j,ik,j,i
)2()2(

k,2/1j,i ,MAXK −− νν=ε , 

( )[ ])2(
k,2/1j,i

)4()4(
k,2/1j,i K,0MAX −− ε−=ε ,                   (36) 

with: 

( )k,j,i1k,j,ik,j,i1k,j,ik,j,ik,j,1ik,j,ik,1j,ik,j,ik,j,1ik,j,ik,1j,ik,j,i pppppppppppp −+−+−+−+−+−=ν +−−++−

( )k,j,i1k,j,i1k,j,ik,j,1ik,1j,ik,j,1ik,1j,i p6pppppp ++++++ +−−++−  (37) 

representing a pressure sensor employed to identify 
regions of elevated gradients. The K(2) and K(4) 
constants has typical values of 1/4 and 3/256, 
respectively. Every time that a neighbor cell 
represents a ghost cell, one assumes, for example, 
that k,j,ighost ν=ν . The Ai,j terms can be defined 
according to two models implemented in this work: 
(a) [11] and (b) [12]. In the first case, the Ai,j terms 
are contributions from the maximum normal 
eigenvalue of the Euler equations integrated along 
each cell face. Hence, they are defined as follows: 

(a) [11] model: 

+










 +++

 ++=
−−−−−−

5.0
2
z

2
y

2
x

1
intz

1
inty

1
intx

1
intk,j,i k,2/1j,ik,2/1j,ik,2/1j,,ik,2/1j,ik,2/1j,ik,2/1j,i

SSSaSwSvSuA











 +++

 +++
++++++

5.0
2
z

2
y

2
x

2
intz

2
inty

2
intx

2
int k,j,2/1ik,j,2/1ik,j,2/1ik,j,2/1ik,j,2/1ik,j,2/1i

SSSaSwSvSu

















 ++++++

++++++

5.0
2
z

2
y

2
x

3
intz

3
inty

3
intx

3
int k,2/1j,ik,2/1j,ik,2/1j,ik,2/1j,ik,2/1j,ik,2/1j,i

SSSaSwSvSu











 +++

 +++
−−−−−−

5.0
2
z

2
y

2
x

4
intz

4
inty

4
intx

4
int k,j,,2/1ik,j,2/1ik,j,2/1ik,j,2/1ik,j,2/1ik,j,2/1i

SSSaSwSvSu

















 ++++++

−−−−−−

5.0
2
z

2
y

2
x

5
intz

5
inty

5
intx

5
int 2/1k,j,i2/1k,j,i2/1k,j,i2/1k,j,i2/1k,j,i2/1k,j,i

SSSaSwSvSu











 ++++

 ++
++++++

5.0
2
z

2
y

2
x

6
intz

6
inty

6
intx

6
int 2/1k,j,i2/1k,j,i2/1k,j,i2/1k,j,i2/1k,j,i2/1k,j,i

SSSaSwSvSu .      

(38) 

where “a” represents the sound speed and, for 
instance, ( )k,1j,ik,j,i

1
int uu5.0u −+= . 

(b) [12] model: 

 k,j,ik,j,ik,j,i tVA ∆= ,                                     (39) 

which represents a scaling factor, according to 
structured meshes, with the desired behavior to the 
artificial dissipation term: (i) bigger control volumes 
result in bigger value to the dissipation term; (ii) 
smaller time steps also result in bigger values to the 
scaling term. 
 
5 Calculation of the Viscous Gradients 

 The viscous vectors at the flux interface are 
obtained by the arithmetical average between the 
primitive variables at the right and left states of the 
flux interface, as also the arithmetical average of the 
primitive variable gradients, also considering the 
right and left states of the flux interface. The 
gradients of the primitive variables present in the 
viscous flux vectors are calculated employing the 
Green theorem, which considers that the gradient of 
a primitive variable is constant in the volume and 
that the volume integral which defines this gradient 
is replaced by a surface integral. This methodology 
to calculation of the viscous gradients is based on 
the work of [20]. As an example, one has to xu ∂∂ : 
 

( ) ( )[∫∫∫ ++≅=•=
∂
∂

=
∂
∂

−−

x

k,2/1j,i

S

xk,1j,ik,j,i
k,j,i

x

SV

Suu5.0
V

1udS
V
1Sdnu

V
1dV

x
u

V
1

x
u 

  

( ) ( ) ( )
k,j,2/1ik,2/1j,ik,j,2/1i xk,j,1ik,j,ixk,1j,ik,j,ixk,j,1ik,j,i Suu5.0Suu5.0Suu5.0

−++ −++ +++++

( ) ( ) ]
2/1k,j,i2/1k,j,i x1k,j,ik,j,ix1k,j,ik,j,i Suu5.0Suu5.0

+− +− ++++ .          (40) 

 
 The dimensionless employed in the Euler and 
Navier-Stokes equations, the boundary conditions, 
the geometry configuration and the employed 
meshes are presented in [21]. 
 
 
6  Results 

 Tests were performed in three microcomputers: 
one with processor INTEL CELERON, 1.5GHz of 
clock and 1.0GBytes of RAM (notebook), the 
second with processor AMD SEMPRON (tm) 
2600+, 1.83GHz of clock and 512 Mbytes of RAM 
(desktop), and the third one with processor INTEL 
CELERON 2.13GHz of clock and 1.0GBytes of 
RAM (notebook). As the interest of this work is 
steady state problems, one needs to define a 
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criterion which guarantees that such condition was 
reached. The criterion adopted in this work was to 
consider a reduction of no minimal three (3) orders 
in the magnitude of the maximum residual in the 
domain, a typical criterion in the CFD community. 
The residual to each cell was defined as the 
numerical value obtained from the discretized 
conservation equations. As there are eight (8) 
conservation equations to each cell, the maximum 
value obtained from these equations is defined as 
the residual of this cell. Thus, this residual is 
compared with the residual of the other cells, 
calculated of the same way, to define the maximum 
residual in the domain. In the simulations, the attack 
angle, α, was set equal to zero. 
 
6.1 Initial conditions 
The initial conditions to the standard simulation 
of the studied algorithms are presented in Tab. 1. 
This is a benchmark case to the flow submitted 
to a magnetic field normal to the symmetry line 
of the blunt body configuration. The Reynolds 
number was calculated from the data of [22]. 
 

Table 1. 3D initial conditions. 
 

Property Value 
M∞ 10.6 
By,∞ 0.15 T 
µM 1.2566x10-6 T.m/A 
σ∞ 1,000 ohm/m 

Altitude 40,000 m 
Pr 0.72 

L (2D) 2.0 m 
Re∞ (2D) 1.6806x106 

 

6.2. Numerical results 

6.2.1. Results with the [9] scheme to inviscid flow 
in three-dimensions 
Figures 1 and 2 present the pressure contours 
calculated at the computational domain to the 
inviscid gas flow submitted to a magnetic field. 
Figures 1 and 2 exhibit the solutions obtained with 
the [9] scheme employing the artificial dissipation 
models of [12] and [11], respectively. The pressure 
field obtained by the [9] scheme employing the 
dissipation model of [11] is more intense than that 
obtained with the dissipation model of [12]. Good 
symmetry properties are observed in both solutions. 
 Figures 3 and 4 show the Mach number contours 
calculated at the computational domain by the [9] 
scheme employing the artificial dissipation models 

of [12] and of [11], respectively. The Mach number 
field obtained by the [9] scheme employing the 
dissipation model of [11] is more intense. Good 
symmetry properties are observed in both solutions. 
The shock wave develops naturally, passing from a 
normal shock at the symmetry line to oblique shock 
waves along the body and finishing in a Mach wave, 
far from the geometry. 

 
Figure 1 : Pressure Contours ([9]/[12]). 

 
Figure 2 : Pressure Contours ([9]/[11]). 

 
 Figures 5 and 6 present the translational / 
rotational temperature distributions calculated at the 
computational domain. The [9] scheme with the 
artificial dissipation model of [12] predicts a more 
severe temperature field. 
 Figures 7 and 8 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry. The solution presented by the 
[9] scheme with the dissipation model of [11] is 
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quantitatively more symmetrical than the respective 
one obtained with the dissipation model of [12], 
although the latter presents a more intense Bx 
component field. 

 
Figure 3 : Mach Number Contours ([9]/[12]). 

 
Figure 4 : Mach number Contours ([9]/[11]). 

 
Figure 5 : Temperature Contours ([9]/[12]). 

 
Figure 6 : Temperature Contours ([9]/[11]). 

 
Figure 7 : Bx Component of Magnetic Field ([9]/[12]). 

 
Figure 8 : Bx Component of Magnetic Field ([9]/[11]). 

 
 Figures 9 and 10 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
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initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. 

 
Figure 9 : Magnetic Field and Induction Lines ([9]/[12]). 

 
Figure 10 : Magnetic Field and Induction Lines ([9]/[11]). 

 
Figure 11 : -Cp Distributions. 

 
 Figure 11 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 

by the [9] scheme employing the dissipation model 
of [11] is more severe than that obtained with the 
dissipation model of [12], presenting a Cp peak at 
the configuration nose bigger. Figure 12 presents the 
distribution of the translational / rotational 
temperature along the configuration symmetry line 
or configuration stagnation line. As can be noted, 
the dissipation models predict different shock wave 
positions. [12] model predicts the shock wave at 
1.60m ahead of the blunt body nose, while the [11] 
model predicts the shock wave at 1.30m ahead of 
the blunt body nose. 

 
Figure 12 : Shock Position by the Temperature profile. 

 
6.2.2 Results with the [9] scheme to viscous flow 
in three-dimensions 
Figures 13 and 14 exhibit the pressure contours 
calculated at the computational domain. The 
pressure field obtained by the [9] scheme employing 
the dissipation model of [12] is more intense than 
that obtained with the dissipation model of [11], 
with a behavior opposed to that observed in the 
inviscid solution. Good symmetry properties are 
observed in both solutions. 

 
Figure 13 : Pressure Contours ([9]/[12]). 
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Figure 14 : Pressure Contours ([9]/[11]). 

 
 Figures 15 and 16 show the Mach number 
contours calculated at the computational domain by 
the [9] scheme employing the artificial dissipation 
models of [12] and of [11], respectively. The Mach 
number field obtained by the [9] scheme employing 
the dissipation model of [11] is more intense. It is 
important to note that both solutions present pre-
shock oscillation problems, being more critical 
those observed in the solution with [11] model. 
Good symmetry properties are observed in both 
solutions. 

Figure 15 : Mach Number Contours ([9]/[12]). 
 
 Figures 17 and 18 present the translational / 
rotational temperature distributions calculated at the 
computational domain. The [9] scheme with the 
artificial dissipation model of [11] predicts a more 
severe temperature field. This temperature field is 
much more severe than that obtained by the inviscid 
solution. The temperature peak occurs along the 
rectilinear walls, by the development of the wall 
heating due to the consideration of viscous effects. 

 
Figure 16 : Mach Number Contours ([9]/[11]). 

 
Figure 17 : Temperature Contours ([9]/[12]). 

 
Figure 18 : Temperature contours ([9]/[11]). 

 
 Figures 19 and 20 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
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around the geometry. The solutions presented by the 
[9] scheme with the dissipation models of [12] and 
of [11] have meaningful numerical non-symmetry. 
The dissipation model of [11] presents a Bx field 
more intense. 

 
Figure 19 : Bx Component of Magnetic Field ([9]/[11]). 

 
Figure 20 : Bx Component of Magnetic Field ([9]/[11]). 

 
Figure 21 : Magnetic Field and Induction Lines ([9]/[12]). 

 

 Figures 21 and 22 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. 

 
Figure 22 : Magnetic Field and Induction Lines ([9]/{11]). 

 
Figure 23 : -Cp Distributions. 

 
 Figure 23 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 
by the [9] scheme employing the dissipation model 
of [11] is more severe than that obtained with the 
dissipation model of [12], presenting bigger Cp 
variation between the configuration nose and the 
configuration rectilinear walls. Figure 24 presents 
the distribution of the translational / rotational 
temperature along the configuration symmetry line 
or configuration stagnation line. As can be noted, 
the dissipation models predict different shock wave 
positions. The [12] model predicts the shock wave 
at 0.90m ahead of the blunt body nose, while the [11] 
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model predicts the shock wave at 0.80m ahead of 
the blunt body nose. 

 
Figure 24 : Shock Position by the Temperature Profile. 

6.2.3 Results with the [10] scheme to inviscid flow 
in three-dimensions 

 
Figure 25 : Pressure Contours ([10]/[12]). 

 
Figure 26 : Pressure Contours ([10]/[11]). 

 

 Figure 25 and 26 present the pressure contours 
calculated at the computational domain. The 
pressure contours obtained by the [10] scheme 
employing the dissipation model of [11] is more 
intense than that obtained with the dissipation model 
of [12]. Good symmetry properties are observed in 
both solutions. 
 Figures 27 and 28 exhibit the Mach number 
contours calculated at the computational domain by 
the [10] scheme employing the artificial dissipation 
models of [12] and of [11], respectively. The Mach 
number field obtained by the [10] scheme 
employing the dissipation model of [11] is more 
intense. Good symmetry properties are observed in 
both solutions. The shock wave develops naturally, 
passing from a normal shock (frontal) to a Mach 
wave, through oblique shock waves. 

 
Figure 27 : Mach Number Contours ([10]/[12]). 

 
Figure 28 : Mach Number Contours ([10]/[11]). 

 
 Figures 29 and 30 show the translational / 
rotational temperature distributions calculated at the 
computational domain. The [10] scheme with the 
artificial dissipation model of [12] predicts a more 
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severe temperature field. This field is, however, 
inferior in intensity to the respective one calculated 
by the [9] scheme, as seen in Fig. 5. 

 
Figure 29 : Temperature Contours ([10]/[12]). 

 
Figure 30 : Temperature Contours ([10]/[11]). 

 
Figure 31 : Bx Component of Magnetic Field ([10]/[12]). 
 
 Figures 31 and 32 exhibit the contours of the Bx 
component of the magnetic field vector determined 

at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry, equally observed in the 
solutions with the [9] scheme. The solutions 
presented by the [10] scheme with the dissipation 
models of [12] and of [11] have good symmetry 
properties. The latter solution presents a Bx field 
more intense. 

 
Figure 32 : Bx Component of Magnetic Field ([10]/[11]). 
 
 Figures 33 and 34 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. The 
same behavior was observed in the inviscid 
solutions obtained with the [9] scheme. 

 
Figure 33 : Magnetic Field and Induction Lines ([10]/[12]). 
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Figure 34 : Magnetic Field and Induction Lines ([10]/[11]). 

 
 Figure 35 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 
by the [10] scheme employing both dissipation 
models present the same intensity.  

 
Figure 35 : -Cp Distributions. 

 
Figure 36 : Shock Position by the Temperature Profile. 

Figure 36 presents the distribution of the 
translational / rotational temperature along the 
configuration symmetry line or configuration 
stagnation line. As can be noted, the dissipation 
models predict approximately the same shock wave 
positions. The [11-12] models predict the shock 
wave at 1.60m ahead of the blunt body nose. 

6.2.4 Results with the [10] scheme to viscous flow 
in three-dimensions 
 Figure 37 and 38 present the pressure contours 
calculated at the computational domain. The 
pressure contours obtained by the [10] scheme 
employing the dissipation model of [12] is more 
intense than that obtained with the dissipation model 
of [11], opposed to the behavior observed in the 
inviscid solution. Good symmetry properties are 
observed in both solutions. This field is also more 
intense than the respective one obtained with the [9] 
scheme employing the same dissipation model. 

 
Figure 37 : Pressure Contours ([10]/[12]). 

 
Figure 38 : Pressure Contours (JM/M). 
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Figure 39 : Mach Number Contours ([10]/[12]). 

 
Figure 40 : Mach Number Contours ([10]/[11]). 

 
Figure 41 : Temperature Contours ([10]/[12]). 

 
 Figures 39 and 40 exhibit the Mach number 
contours calculated at the computational domain by 
the [10] scheme employing the artificial dissipation 
models of [12] and of [11], respectively. The Mach 
number field obtained by the [10] scheme 

employing the dissipation model of [11] is more 
intense. It is important to note that both solutions 
present problems of pre-shock oscillations, being 
the [11] model solution as quantitatively more 
critical. Good symmetry properties are observed in 
both solutions. 
 Figures 41 and 42 show the translational / 
rotational temperature distributions calculated at the 
computational domain. The [10] scheme with the 
artificial dissipation model of [12] predicts a more 
severe temperature field, much more severe than the 
respective one obtained with the [9] scheme. This 
field is much more severe than that obtained with 
the inviscid solution of the present scheme. The 
temperature peak occurs along the rectilinear walls, 
by the development of the heating acting in these 
walls, due to the consideration of viscous effects. 

 
Figure 42 : Temperature Contours ([10]/[11]). 

 
Figure 43 : Bx Component of Magnetic Field ([10]/[12]). 
 
 Figures 43 and 44 exhibit the contours of the Bx 
component of the magnetic field vector determined 
at the calculation domain. As can be observed, the 
Bx component is negative at the geometry lower 
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surface and positive at the geometry upper surface, 
indicating that the magnetic field performs a curve 
around the geometry. The solutions presented by the 
[10] scheme with the dissipation models of [12] and 
of [11] have meaningful symmetry properties. The 
dissipation model of [11] presents a Bx field more 
intense. 

 
Figure 44 : Bx Component of Magnetic Field ([10]/[11]). 

 
Figure 45 : Magnetic Field and Induction Lines ([10]/[12]). 

 
Figure 46 : Magnetic Field and Induction Lines ([10]/[11]). 

 Figures 45 and 46 exhibit the magnetic vector 
field with induction lines to highlight the satisfied 
initial condition far ahead of the configuration and 
the distortion in these lines close to the blunt body. 
As can be observed, the magnetic induction lines are 
initially attracted to the magnetic field imposed at 
the blunt body walls and, close to the body, suffer 
distortion, getting round the configuration. The 
same behavior was observed in the respective 
solutions obtained with the [9] scheme. 
 Figure 47 shows the –Cp distributions along the 
blunt body wall. As can be seen, the shock captured 
by the [10] scheme employing the [11] dissipation 
model is more severe than that obtained with the [12] 
dissipation model, presenting bigger variation in the 
Cp value between the nose and the rectilinear walls 
of the blunt body. 

 
Figure 47 : -Cp Distributions. 

 
Figure 48 : Shock Position by the Temperature Profile. 

 
Figure 48 presents the distribution of the 
translational / rotational temperature along the 
configuration symmetry line or configuration 
stagnation line. As can be noted, the dissipation 

WSEAS TRANSACTIONS on MATHEMATICS Edisson Sávio De Góes Maciel, Amilcar Porto Pimenta

E-ISSN: 2224-2880 582 Issue 6, Volume 11, June 2012



models predict the same shock wave positions. The 
[12] model predicts the shock wave at 1.00m ahead 
of the blunt body nose, while the [11] model 
predicts the shock wave at 0.90m ahead of the blunt 
body nose. 

6.2.5 Effects over the shock wave standoff 
distance due to the increase of the magnetic field 
vector (By component) to the inviscid simulations 
in three-dimensions 
To these studies, the [9] and the [10] schemes 
employing the artificial dissipation operator of [11], 
which has presented better characteristics of 
pressure contour severity (-Cp distributions) and 
shock wave standoff distance than the [12] model, 
were analyzed. Variations of the By,∞ component 
between values from 0.00T (without magnetic field 
influence) until 0.55T, which has presented a 
meaningful increase in the shock standoff distance, 
were simulated. 

 
Figure 49 : Pressure Contours (By,∞ = 0.00T). 

 
Figure 50 : Pressure Contours (By,∞ = 0.55T). 

 
 Figures 49 and 50 exhibit the pressure contours 
around the blunt body geometry, evaluated at the 

computational domain, calculated by the [9] scheme 
with the dissipation model of [11], to the two 
extreme cases By,∞ = 0.00T and By,∞ = 0.55T. As can 
be observed, Fig. 49 presents the shock very close to 
the configuration nose. Figure 50, however, exhibits 
a shock wave more detached from the configuration 
nose, which leads to a temperature field less intense, 
reducing the heating from the configuration nose. 
 Figure 51 and 52 show the translational / 
rotational temperature contours around the blunt 
body geometry, to the two extreme cases By,∞ = 
0.00T and By,∞ = 0.55T. 

 
Figure 51 : Temperature Contours (By,∞ = 0.00T). 

 
Figure 52 : Temperature Contours (By,∞ = 0.55T). 

 
As can be observed, the solution without the 
magnetic field presents a normal shock attached to 
the configuration nose, while the solution with the 
maximum value of By,∞ presents a shock wave more 
detached from the blunt body nose. According to the 
expected behavior, the temperature peak in this last 
solution (with magnetic field different from zero) is 
smaller than the respective temperature peak of the 
solution without the influence of the magnetic field. 
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This is the expected behavior because with bigger 
shock standoff distance less the range of reached 
temperatures. Hence, the [9] scheme agrees 
faithfully with the results of [23-24]. 
 Figure 53 exhibits the pressure along the 
stagnation line of the blunt body geometry. This 
distribution serves to define the shock standoff 
distance along the stagnation line. The graphic is 
plotted with the non-dimensional pressures along 
the stagnation line as function of the x coordinate 
along the symmetry line. As can be observed, as the 
increase of the By,∞ intensity is bigger, bigger is the 
shock standoff distance in relation to the not 
influence of the magnetic field. 

 
Figure 53 : Pressure Distributions at the Stagnation Line. 
 
Table 2 exhibits the shock standoff distance to each 
value of the By,∞ component. 

Table 2 : Values of normal shock standoff distance 
due to variations in By,∞ - [9]. 

 

By,∞ (T) Xshock (m) 
0.00 1.9322 
0.05 1.9322 
0.15 1.9322 
0.25 2.5763 
0.35 2.2542 
0.45 2.2542 
0.55 2.8983 

 
 It is possible to conclude from this table that the 
biggest shock standoff distance occurs to the 
maximum studied magnetic field intensity, By,∞ = 
0.55T, corresponding to a distance of 2.8983m. 
These qualitative results accords with the literature: 
[23-24]. 
 Figures 54 and 55 exhibit the pressure contours 
around the blunt body configuration, evaluated at 

the computational domain, calculated by the [10] 
scheme with the dissipation model of [11], to the 
two extreme cases By,∞ = 0.00T and By,∞ = 0.55T. 
As can be observed, Fig. 54 presents the shock 
attached to the blunt body nose. Figure 55 shows the 
shock more detached from the configuration nose, 
which leads to a less intense temperature field, 
reducing the heating at the nose. 

 
Figure 54 : Pressure Contours (By,∞ = 0.00T). 

 
Figure 55 : Pressure Contours (By,∞ = 0.55T). 

 
 Figure 56 and 57 present the translational / 
rotational temperature contours around the blunt 
body geometry. As can be observed, the solution 
without the influence of a magnetic field presents a 
normal shock attached to the configuration nose, 
while the solution with the maximum value of By,∞ 
presents a shock more detached from the blunt body 
nose. As expected behavior, the temperature peak in 
the latter solution (with a magnetic field different 
from zero) is less than the respective temperature 
peak of the solution without the influence of a 
magnetic field, which accords with the theory 
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because with bigger shock standoff distance, less the 
temperature ranges reached by the flow. With it, the 
[10] scheme presents the correct evaluation of the 
temperature field. By this analyze, a reduction in the 
heating of the configuration nose as submitted to a 
magnetic field more intense is obtained. 

 
Figure 56 : Temperature Contours (By,∞ = 0.00T). 

 
Figure 57 : Temperature Contours (By,∞ = 0.55T). 

 
 Figure 58 exhibits the pressure distribution along 
the stagnation line of the blunt body geometry. This 
distribution serves to define the shock standoff 
distance along the stagnation line. The graphic is 
plotted with the non-dimensional pressures at the 
stagnation line as function of the x coordinate along 
the symmetry line. As can be observed, as the By,∞ 
intensity increases, bigger shock standoff distance 
occurs in relation to the condition of flow without 
the magnetic field influence. Table 3 presents the 
shock standoff distance to each value of By,∞. It is 
possible to conclude from this table that the biggest 
normal shock standoff distance occurs to the 
maximum studied magnetic field intensity of By,∞ = 
0.55T, corresponding to a distance of 2.5763m. 

These qualitative results accord to the literature: 
[23-24]. 

 
Figure 58 : Pressure Distributions at the Stagnation Line. 

Table 3 : Values of the normal shock standoff 
distance due to variations in By,∞ - [10]. 

 

By,∞ (T) Xshock (m) 
0.00 1.9322 
0.05 1.9322 
0.15 2.2542 
0.25 2.2542 
0.35 2.2542 
0.45 2.2542 
0.55 2.5763 

 
 As can be observed, the [10] scheme employing 
the artificial dissipation model of [11] has presented 
the solutions more accurate and more consistent, 
serving as the reference algorithm to this study. 

6.3 Computational performance of the 
studied algorithms 
Table 4 presents the computational data of the 
simulations with magnetic field influence over a 
blunt body configuration in three-dimensions. The 
table shows the studied cases, the CFL number of 
the simulations, the iterations to convergence and 
the values of k2 and k4 employed in each simulation. 
The major cases converged in four (4) orders of 
reduction of the maximum residual. The distribution 
of the CFL number was as follows: 0.5 in two cases 
(25.00%), 0.3 in two cases (25.00%), 0.2 in three 
cases (37.50%) and 0.1 in one case (12.50%). The 
maximum number of iterations to convergence 
reached less than 30,100 iterations, with the solution 
of the [9] scheme employing the dissipation model 
of [11]. In cases in which the [10] scheme was 
employed, the number of iterations to convergence 
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was inferior to 5,000. The [9] scheme needed to 
employ the value of 0.75 to the k2 coefficient 
(stability in presence of shock waves) in two cases 
to obtain convergence: viscous case with the 
dissipation models [11-12]. The [10] scheme needed 
to use the value 0.75 to k2 coefficient in one case: 
viscous case with [11] dissipation model. It is 
important to emphasize that all viscous simulations 
were considered laminar, without the introduction of 
a turbulence model, although a raised Reynolds 
number was employed in the simulations. 

Table 4. Computational data from the blunt 
body simulations. 

 

Studied case CFL Iterations k2 / k4 
I(1)/[9]/[11] 0.3 1,443 0.50 / 0.01 
V(2)/[9]/[11] 0.1 30,010 0.75 / 0.01 

I/[9]/[12] 0.3 2,822 0.50 / 0.01 
V/[9]/[12] 0.2 4,039 0.75 / 0.01 
I/[10]/[11] 0.5 3,445 0.50 / 0.01 
V/[10]/[11] 0.2 4,737 0.75 / 0.01 
I/[10]/[12] 0.5 2,998 0.50 / 0.01 
V/[10]/[12] 0.2 3,699 0.50 / 0.01 

(1): Inviscid; (2): Viscous. 

Table 5. Computational costs of the structured 
schemes of [9] and [10]. 

 

Studied case Computational cost(1) 
Inviscid/[9]/[12] 0.0004878 
Viscous/[9]/[12] 0.0005889 
Inviscid/[9]/[11] 0.0005217 
Viscous/[9]/[11] 0.0006341 

Inviscid/[10]/[12] 0.0011975 
Viscous/[10]/[12] 0.0023405 
Inviscid/[10]/[11] 0.0013678 
Viscous/[10]/[11] 0.0025679 

(1) Measured in seconds/per iteration/per computational cell. 
 
 Table 5 presents the computational costs of the 
[9] and of [10] schemes in the formulation which 
considers the influence of the magnetic field, 
employing the artificial dissipation models of [11] 
and of [12]. This cost is evaluated in seconds/per 
iteration/per computational cell. The costs were 
calculated employing a notebook with 2.13GHz of 
clock and 1.0GBytes of RAM, in the Windows 
Vista Starter environment. The cheapest algorithm 
was the [9] scheme, in the inviscid simulation, 
employing the [12] artificial dissipation model, 
while the most expensive was the [10] scheme, in 
the viscous simulation, employing the artificial 
dissipation model of [11]. In relative percentage 
terms, the former is 426.43% cheaper than the latter. 

The [10] algorithms are more expensive than the [9] 
algorithms because the former calculates the flux at 
interfaces by arithmetical average between the flux 
vectors, while the latter employ the forward or 
backward values in relation to the flux interface in 
each predictor or corrector step, respectively, 
dismissing the average calculations. 
 
7 Conclusions 
The present work aimed to implement a 
computational tool to simulation of inviscid and 
viscous flows employing a magnetic field 
formulation acting on a specific geometry. In this 
study, the Euler and the Navier-Stokes equations 
employing a finite volume formulation, following a 
structured spatial discretization, were solved. The 
aerospace problem of the hypersonic flow around a 
blunt body geometry was simulated. A spatially 
variable time step procedure was employed aiming 
to accelerate the convergence of the numerical 
schemes to the steady state solution. Effective gains 
in terms of convergence acceleration are observed 
with this technique ([13-14]). 
 The study with magnetic field employed the [9] 
and the [10] algorithms to perform the numerical 
experiments. The [9] scheme is calculated by 
forward and backward values to the convective flux 
vectors at the flux interface, in the predictor and 
corrector steps, respectively. The [10] scheme is 
calculated by arithmetical average between the 
convective flux vectors at the flux interface, 
opposed to the arithmetical average between the 
conserved variable vector. The viscous flux vectors 
are calculated by arithmetical average of the 
conserved variables and of the gradients. This 
procedure to the viscous simulations is employed by 
the [9] and by the [10] schemes. The results, mainly 
those obtained with the [10] algorithm, are of good 
quality. In particular, it was demonstrated the effect 
that the imposition of a normal magnetic field in 
relation to the symmetry line of a blunt body 
geometry could cause the increase of the shock 
standoff distance, reducing, hence, the aerodynamic 
heating. This effect is important and can be explored 
in the phases of aerospace vehicle project which 
does reentry in the atmosphere normal to the earth 
magnetic field. Another option would be the proper 
vehicle generates an oscillatory electrical field to 
yield a magnetic field in it and to induce the effect 
of the increase of the shock standoff distance. These 
are suggestions to verify. 
 The cheapest algorithm was the [9] scheme, in 
the inviscid simulation, employing the [12] 
dissipation model, while the most expensive was the 
[10] scheme, in the viscous simulation, employing 
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the artificial dissipation model of [11]. In relative 
percentage terms, the former is 426.43% cheaper 
than the latter. The [10] algorithms are more 
expensive than the [9] algorithms because the 
former calculates the inviscid flux at interfaces by 
arithmetical average between the flux vectors, while 
the latter employ the forward or backward values in 
relation to the flux interface in each predictor or 
corrector step, respectively, dismissing the average 
calculations. 
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