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Abstract: - In this paper, the Euler and Navier-Stokes equations are solved, according to the finite volume
formulation and symmetrical structured discretization, applied to the problem of a blunt body in three-
dimensions. The work of Gaitonde is the reference one to present the fluid dynamics and Maxwell equations of
electromagnetism based on a conservative and finite volume formalisms. The MacCormack and the Jameson
and Mavriplis symmetrical schemes are applied to solve the conserved equations. Two types of numerical
dissipation models are applied, namely: Mavriplis and Azevedo. A spatially variable time step procedure is
employed aiming to accelerate the convergence of the numerical schemes to the steady state solution. The
results have proved that, when an induced magnetic field isimposed, an increase in the shock standoff distance
is observed, which guarantees a minor increase in the temperature at the blunt body nose.
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1 Introduction In addition to daunting engineering challenges,
_ _ _ _ some of the phenomena supporting the feasibility of
The effects associated with the interaction of an AJAX type vehicle are fraught with controversy
magnetic forces with conducting fluid flows have (see, for example, [7]). Resolution of these issues
been profitably employed in several applications will require extensive experimentation as well as
related to nuclear and other ([1]) technologies and simulation. The latter approach requires integration
are known to be essential in the explanation of of several disciplines, including fluid dynamics,
astrophysical phenomena. In recent years, however, electromagnetics, chemical kinetics and molecular
the study of these interactions has received fresh physics amongst others. This paper describes a
impetus in the effort to solve the prot_)Iems of high recent effort to integrate the first two of these,
drag and thermal loads encountered in hypersonic within the assumptions that characterize ideal and
flight. The knowledge that electrical and magnetic non-ideal magnetogasdynamics.
forces can have profound influence on hypersonic In this paper, the Euler and Navier-Stokes
flowfieldsis not new ([2-3]) — note increased shock- equations are solved, according to a finite volume

standoff and reduced heat ftransfer rates in formulation ~ and  symmetrical  structured

hypersonic flows past blunt bodies under the discretization, applied to the problem of a blunt
application of appropriate magnetic fields. The body in three-dimensions. The work of [8] is the

recent interest stems, however, from new revelations reference one to present the fluid dynamics and
of a Russian concept vehicle, known as the AJAX Maxwell equations of electromagnetism based on a
([4]), which made extensve reference to conservative and finite volume formalisms. The [9]
technologies requiring tight coupling between and the [10] symmetrical schemes are applied to
electromagnetic and fluid dynamic phenomena. A solve the conserved eguations. Two types of

magnetogasdynamic  (MGD)  generator ~ was numerical dissipation models are applied, namely:
proposed ([5]) to extract energy from the incoming [11-12]. A spatidly variable time step procedure is

air while smultaneously providing more benign employed aiming to accelerate the convergence of
flow to the combustion components downstream. the numerical schemes to the steady state solution.
The extracted energy could then be employed to Effective gainsin terms of convergence acceleration
increase thrust by MGD pumping of the flow exiting are observed with this technique ([13-14]).

the nozzle or to assist in the generation of a plasma The results have proved that, when an induced
for injeC'[ion of the bOdy This latter teChnique is m@ne[ic field is imposaj, an increase in the shock
known to not only reduce drag on the body but also standoff distance is observed, which guarantees a

to provide thermal protection ([6]).
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minor increase in the temperature at the blunt body
nose (minor armor problems).

2 Formulation to a Flow Submitted to
aMagnetic Field

The Navier-Stokes equations to a flow submitted
to a magnetic field in a perfect gas formulation are
implemented on a finite volume context and three-
dimensional space. The Euler equations are obtained
by disregarding of the viscous vectors. These
equations in integral and conservative forms can be
expressed by:

ﬁdeerjﬁ.ﬁdszo,with;
aty s

Ia::(Ee_Ev)_i._F(Fe_I:v)_j._'_(Ge_Gv)_k.’(1)

where: Q is the vector of conserved variables, V is

the computational cell volume, F is the complete
flux vector, n isthe unity vector normal to the flux
face, S is the flux area, E;, F. and G, are the
convective flux vectors or the Euler flux vectors
considering the contribution of the magnetic field in
the x, y and z directions, respectively, and E,, F, and
G, are the viscous flux vectors considering the
contribution of the magnetic field in the x, y and z

directions, respectively. The unity vectors T, ] and
k define the system of Cartesian coordinates. The

vectors Q, E., Fe, G, Ey, Fy, and G, can be defined,
according to [8], asfollows:
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in which: p is the fluid density; u, v and w are the

Cartesian components of the velocity vector in the x,

y and z directions, respectively; Z is the flow total
energy considering the contribution of the magnetic
field; By, By and B, are the Cartesian components of
the magnetic field vector active in the X, y and z
directions, respectively; P is the pressure term
considering the magnetic field effect; R, is the
magnetic force number or the pressure number;
is the mean magnetic permeability, with the value

4nx107 T.m/A to the atmospheric air; V istheflow

velocity vector in Cartesian coordinates, B is the
magnetic field vector in Cartesian coordinates; the
T's are the components of the viscous stress tensor
defined at the Cartesian plane; oy, 0y and g, are the
components of the Fourier heat flux vector in the x,
y and z directions, respectively; q;x, sy and g, are
the components of the Joule heat flux vector in the x
y and z directions, respectively; Re; is the magnetic
Reynolds number; and o is the electrica
conductivity.

The viscous stresses, in N/m?, are determined,
according to a Newtonian fluid model, by:

ou 2 (8u ov an
W —+—+—

ox 3 \ox oy oz
Y L LR P (iﬂ@] ©)
oy oX 0z OX

A TNy
oV ow
TYZ=M(E+EJ; (")
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(8)

where u is the fluid molecular viscosity. In this
work, the empiric formula of Sutherland was
employed to the calculation of the molecular
viscosity (detailsin [15]).

Z isthetota energy defined by:

2 2 2 2 2 2 2
7_ p +u+v+w+Rb B b uHvwW
-1 2 20 (=% 2
(B2 +B%+B2)
+R, : 9)
2uyp
The pressure term is expressed by:
B2 B2 +B2+B?
P=p+R, _p+Rb(—y). (10)
v Um

The magnetic force number or pressure number
is determined by:

. B? (B2, +B?, +B2,) ”
o poovwzu'M,oc - pso(ufo +Vi +W020)]J’M,oo .
The laminar Reynolds number is defined by:
V_L
Re=P=Yat (12)
Mo

in which “co” represents freestream properties, V.,
represents the characteristic flow velocity and L isa
characteristic length of the studied configuration.
The magnetic Reynolds number is calculated by:
Re, =LV, uy.0,. (13)
The components of the Fourier heat flux vector
are expressed by:

.k a
= (y—1)Pr M2 Re x ’
H T

b= DPrMZRe dy | (14)
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LR—L
(y-1)PrM2Re oz’

qz == (15)

with:

Pr=p,Cp/k = 0.72, is the laminar Prandtl
number; (16)

. V—°° , isthe freestream Mach number;
VYP/p
(17)

y is the ratio of specific heats to a perfect gas,
with avalue of 1.4 to atmospheric air.

The components of the Joule heat flux vector,
which introduces the non-ideal character of the
mixed Navier-Stokes / Maxwell equations, are

determined by:
0. - RolB a[By}_a[ij B a[Bz]_a[ij .
MRy Lo x Ly ) oyl )| o ox ) ozl )|
(18)
q:ﬁBﬂf}%w+wqﬂﬁ@»
YR, (mo oyl ) oxlp )| mo| oyl ) azlmy ][
(19)
q?&&ﬁﬁ}%ﬂ+%%ﬂﬁfﬂ
. Ry [umo| 0z\my ) Oy )| uwo| 0z\my ) Oy \py
(20)

3 [9] Structured Algorithm in Three-
Dimensions

Employing finite volumes and applying the Green
theorem to Eq. (1), one writes:

]/VukI(F’ )I]k

In the discretization of the surface integral, Eq. (21)
can be rewritten as:

oQ, ot = . (21)

in,i,k/dt:']/Vi,i,k l(l—hé)i,j—l/z‘k +(r:.§)i+1/2‘j‘k *('E’é)i.pllzy +
+(~°é)i—1/2,j,k +('E'§)i,j,k-1/2 +(r:.é)i,j,k+1/2l' (22)

Discretizing Equation (22) in time employing the
explicit Euler method, resultsin:
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Qm = Qi At/ Vi [(F‘S)i,j—llz,k +(FSisarojn t (F- i jsarox +
(FSiyzjk +(FSijkwzt (F'S)i,j,k+1/2]n . (23)

The time integration is now divided in two steps:
one predictor and another corrector. In the predictor
step, the convective flux terms are calculated using
the properties of the forward cell in relation to the
flux interface. The viscous terms are discretized in a
symmetrical  form. In the corrector step, the
properties of the backward cell in relation to the flux
interface are employed. The viscous terms are again
calculated in a symmetrical form. With this
procedure, the scheme is of second order accuracy
in space and time. Hence, the [9] agorithm, based
on a finite volume formulation, is described as

follows:
Predictor step:
Aanﬁ :_Ati,j,k/vi,j,k {[( )IJ (E )| ,—1/2 khi,j—llz,k

| 12k in,j—llz,k
+{\F )i+l,j,k _(FV)i+1l2,j,kJSyi+1/2,j,k +[( e/i+ljk ( |+l/2,j,kbxi+1/2,j,k

(
+KG )H-ljk (G |+l/2]kb2|+1/2]k+{( e I]+lk (E i,j+1/ 2.k I7Xi, j+1/ 2.k

%(F )i,j,k ‘(Fv)i,j-1/2,kr5yi,j_1/2k +[G,)

+[(F Lk T |J+1/2k}5y| 12k +K elijik (Gv)| L2k Pri 12k
+[( E)Ijk -(E )—1/2jk Xi—llek+|.(ei]k Fvu/z;kfsy. 2k
+[( e)ljk (€ )—l/ZJk 7 1/21k+[(Ee|]k Evukllz}sxukl/z
+[(Fe)ljk (Fv)ukl/zlsy.Jk 1/2+[Ge)|1k -6 V)'jk 12 Pzi jk-1/2

+\.(EE)|,] k+1 (EV)I k412 17X, k4112 \.(Fe)lijrl (FV Ijk+1/2Fy|Jk+1/2

+ (G )i,j,k+1 - (Gv)i,j,k+1/2bz| i, k+1/2}n (24)
QM = QP +AQT: (25)
Corrector step:

AQIHle = _Ati,J,k/Vi,j,k ﬂ(EE)i,j—Lk 172, khﬁ,j—l/ 2k T
+[ I]—lk_(F |,-1/2k}5y|,_1/2k+{(G ) Lk (G |j—1/2,k]szi,j—1/2,k

+[ IJk |+1/2JkJSX|+1/ka+l( ) -(F,

+l( elijk ~ |+l/2]k Z|+l/2]k l( )Ijk (EV)|1+1/2k Xi,j+1/ 2,k

) i+1/2,j,k b)’i+1/2,j,k

+[(F ik = |J+1/2k}sy| J+1/2k+l eliik -(G, |]+1/2kFZI]+l/2k
+KEe|1Jk |1/2]k X|—1/21k+l elitjk ~ (R) 1/21kFY| 2k
+l(G Lk~ —1/21k Ziai2k l( )]kl (Ev)|,k1/2 Xi jk-1/2
+[(e.1k1 |Jk1/z}5y.,k1/2 +[e.) I]kl v)ukl/zjszukl/z

+l ehijk ™ |,j,k+1/zin,j,k+1/z+[ eijk (v)|1k+1/2jsy.,k+1/z
+[Ge)i,j,k _(Gv)i,j,k+1/2b2i,j k+1/2}n o (26)

Qi =05(Q, + QUL +AQrE ). 27)
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With the intent of guaranteeing numerical stability
to the [9] scheme, in its three-dimensiona version,
an artificial dissipation operator of second and
fourth differences ([16-17]) is subtracted from the
flux terms of the right side (RHS, “Right Hand
Side”) in the corrector step, aiming to eliminate
instabilities originated from shock waves and due to
the field stability. The operator is of the following

type: D, ;, = d@, —d{?, , defined in section 4.1,

4 [10] Structured Algorithm in Three-
Dimensions

Equation (1) can be rewritten following a

structured spatia discretization context ([10, 18]) as:

d(vi,j,in,j,k)/dt+C(Qi,j,k)=Oa (28)

where:

C(Qijk)_i 5(E ehjx * (Ee )lekJ‘ ij1/2k}sxuuzk

+b5l( IJk ||LkJ ul/Zk;sY 1/2k+i05l \Jk G \JlkJ )\]12k}s||1/2k
+{05[( 9\|k H—LH(J |+12Jk}5m/m EOSI |Jk+(F€| |kJ V)\+12|k}SY.1m
105{( 9)\,Jk \+l|kJ ( \+12|k}SIH1m i05[ \jk+(E9IJ+LkJ EV)|J+12kb 12k

+b5[(Fe)uk+ \J+LkJ FVIJ+1ZK}S‘/ I L N ehik Ge)\HLkJ GV)\J+12kF‘,+1z
PS(Eeh 1+ Behyp Bk ug S ey + DRk Feb-g b By
+p5KGE)\Jk+ eILJkJ (€ VIlz‘j‘kﬁz\.1/2‘1‘k+p5[( uk+(E9)\Jk1J v)llklziswz
PR 1R R oo 058 e ca -Gl s
+D8{ERh o+ Eeh il ok a1 PSRkt el b e,
+iO5l(Ge)|]k (Ge)i,j,k+1J‘ Vi,j,k+1/2jszi‘j,k+/z (29)

is the approximation to the flux integral of Eq. (1).
In this work, one adopts that, for example, the flux
vector Ee at the flux interface (i,j-1/2,k) is obtained
by the arithmetical average between the E. vector
caculated at the cell (i,j,k) and the E. vector
calculated at the cell (i,j-1,k). The viscous flux
vectors are calculated in a symmetrica form as
demonstrated in section 5.

The spatial discretization proposed by the
authors is equivalent to a symmetrical scheme with
second order accuracy, on afinite difference context.
The introduction of an artificial dissipation operator
“D” is necessary to guarantee the scheme numerical
stability in presence of, for example, uncoupled
odd/even solutions and non-linear stabilities, as
shock waves. Equation (28) can, so, be rewritten as:

d(vi,j,in,j,k )/dt + [C(Qi,j,k) - D(Qi,j,k )J= 0. (30)
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The time integration is performed by a hybrid
Runge-Kutta method of five stages, with second
order accuracy, and can be represented in general
form as:

Q| Jk T QI ik
-0

Qi,j,k - Qi,j k
(1) _ ()

Qi,r},)rk _Qi,j,k

-a Atle/VIJk[C( Ilk) D(Quk)] (31)

where: | = 1,...,5; m = 0 until 4; o4 = 1/4, o, = 1/6,
o3 = 3/8, s = 1/2 and o5 = 1. [10] suggest that the
artificial dissipation operator should be evaluated
only in the first two stages as the Euler egquations
weresolved (m =0, =1and m =1, | = 2). [19]
suggest that the artificial dissipation operator should
be evaluated in aternated stages as the Navier-
Stokes equationswere solved (m=0,1 =1, m=2, |
=3 and m = 4, | =5). These procedures aim CPU
time economy and also better damping of the
numerical  instabilities originated from the
discretization based on  the  hyperbolic
characteristics of the Euler equations and the
hyperbolic/parabolic characteristics of the Navier-
Stokes eguations.

4.1 Artificial dissipation oper ator
The artificial dissipation operator implemented in
the [9-10] schemes has the following structure:

DQx)=d?(Q)-d9Q,). (32

where:

2
d(Q; )= 055|(])1/2k(Allk +A Qi ok~ Qi)
+0'58i(+)1/2‘j,k( i‘i,k+Ai+1J-,kXQi+lj,k_Qi‘i,k)+0'551,j)+1/2‘k( A Q-0
+0-5€‘(%)1/zyj‘k(Ai,j,k+Ai—1j‘kXQi—],j,k‘Qi,j,k)+O-&fﬁ?k,yz(Ai,j,k+Ai,j‘k—1XQi,j,k—1‘Qi,j‘k)
+ 0'58i(,2j?k+1/2(Ai, A el Qa - Qi) (33)
named undivided Laplacian operator, is responsible

by the numerical stability in the presence of shock
waves, and

d@ (Qi,j,k)= O-SSi(f}),l/z’k(Ai,j,k + Ai,j—LkXVZQi,j—l,k - VZQi,j,k)
*0-53&)1/2,1*(%* *Aw—LJ,kXVZQHLLk 'VZQMi‘k)*0'53w(j)+1/2,k(Ai‘i‘k +Ai‘J-LkXVZQi‘J+Lk ‘VZQH,R)
+0'5£i(f)1/2,j‘k(Ai‘J,k +Ai-u,kl\7201-u,k ‘VZQi,i,k)*0-53\(,41)*71/2(Ai,i‘k *Ai.i‘k-leZQi,i,k—l‘VzQi‘j,k)
+ 0-58i(,?k+1/ z(Ai,j,k + Ai,j,k+1XV2Qi,j,k+1 - VzQi,j,k) , (34)
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named bi-harmonic operator, is responsible by the
background stability (for example: instabilities
originated from uncoupled odd/even solutions). In
thislast term,

VzQi‘j‘k = (Qi,j—lk —Qi,j,k)+(Qi+Lj,k _Qi,J,k)+(Qi,j+Lk ‘Qi,j,k)"’(Qi—lj,k -Qi,j,k)+
+(Qi,j,k—l_Qi,j,k)+(Qi,j,k+l_Qi,j,k)- (39)

In the d® operator, V?Q;;, is extrapolated from
the value of the real neighbor cell every time that it
represent a ghost cell. The ¢ terms are defined, for
instance, as:

2
Ejll/2k7K()MAx (Vljk V|]Lk) )

Si(,j)—1/2,k =MAX lo' (K @- 1(21) u ZK)J (36)
with:

Yijk :qpu-lk 'Pi,J‘kai-u.k 'p\‘J‘k‘J"p\‘Hlk _p\‘J.k‘*"p\—LJ‘k 'pi‘pk‘+‘pwk—l'pi,yk‘+‘pi,yk+l'pi,pk‘)/
(pi,j—l,k T Pissjk TP j+1k T Pi-Ljk T Pijk-1FPijk1t Gpi,j,k) (37)

representing a pressure sensor employed to identify
regions of elevated gradients. The K@ and K@
constants has typica values of 1/4 and 3/256,
respectively. Every time that a neighbor cell
represents a ghost cell, one assumes, for example,
that vgog =Vijk - The Aj; terms can be defined

according to two models implemented in this work:
(& [11] and (b) [12]. In the first case, the A;; terms
are contributions from the maximum normal
eigenvalue of the Euler equations integrated along
each cell face. Hence, they are defined as follows:

(@) [11] model:

05]

4+

05
1 1 1 (2 2 2
||k H |nt5x‘ 1 |ntSyi.H/z‘k J“Wintszw,l,zk +aint(S +Syw1 +S Z,. m) }f
2 2 2 0]
+_‘uimsx'~1/2mk +Vi”tsy\+1/2‘1‘k +Wimsz\+1/21k [ X2,k yul/ZJk Zisy Zlk)
. 05"
H{URS, L VRS, L WS, ¢
(LR TP P L g R TP P L \,mm t Xi jrai2k y‘ 12k z‘

+a| S
'I( X112,k Yumk \1/2

05]
S
[( ||k1/2 ywkllz ||k1/2

05
+a .
in t( X g k+l/2 Y| J k+l/2 Zi i k+1/2j

(38)

[],4 4 4
u'msxwfuu.k +v|ms)/\fl/2‘1‘k +Wmtszi—l/21k

4+

5 5 5
ulmsxi‘j‘k—l/Z +V'”1SY\‘J‘k71/z +W'ntSZ\‘J,k 12

{

6 6 6
umtsx\.J.kAl/Z +V'“ISY|‘1‘k+1/z +WImSZ\,J,k+1/Z

E-ISSN: 2224-2880

572

Edisson Savio De Gées Maciel, Amilcar Porto Pimenta

where “a’ represents the sound speed and, for
instance, uilnt = 0-5(Ui,j,k + ui,j—l,k)'

(b) [12] model:

Ai,j,k :Vi,j,k/Ati,j,k ) (39)
which represents a scaling factor, according to
structured meshes, with the desired behavior to the
artificial dissipation term: (i) bigger control volumes
result in bigger value to the dissipation term; (ii)
smaller time steps also result in bigger values to the
scaling term.

5 Calculation of the Viscous Gradients

The viscous vectors at the flux interface are
obtained by the arithmetical average between the
primitive variables at the right and left states of the
flux interface, as also the arithmetical average of the
primitive variable gradients, also considering the
right and left states of the flux interface. The
gradients of the primitive variables present in the
viscous flux vectors are calculated employing the
Green theorem, which considers that the gradient of
a primitive variable is constant in the volume and
that the volume integral which defines this gradient
is replaced by a surface integral. This methodology
to calculation of the viscous gradients is based on

the work of [20]. As an example, one hasto du/ox :

ii VIZ)L(IdV_\:b-[(.dS) .[Udsx_ ’05u'1k+u'llk)sx ok ¥

05(“'1k+u‘+llkbxuum OS(U'JkJru'J*Lkbxml/zk OS(U'JkHJ' lebxw 12,k

+ O'S(Uivjvk + ui,j,k—lbx,vl‘k,l,z + O'S(Uixjvk + uivl':k’fl)sxw,ku/z J (40)

The dimensionless employed in the Euler and
Navier-Stokes eguations, the boundary conditions,
the geometry configuration and the employed
meshes are presented in [21].

6 Results

Tests were performed in three microcomputers:
one with processor INTEL CELERON, 1.5GHz of
clock and 1.0GBytes of RAM (notebook), the
second with processor AMD SEMPRON (tm)
2600+, 1.83GHz of clock and 512 Mbytes of RAM
(desktop), and the third one with processor INTEL
CELERON 2.13GHz of clock and 1.0GBytes of
RAM (notebook). As the interest of this work is
steady state problems, one needs to define a
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criterion which guarantees that such condition was
reached. The criterion adopted in this work was to
consider a reduction of no minimal three (3) orders
in the magnitude of the maximum residual in the
domain, a typical criterion in the CFD community.
The residual to each cell was defined as the
numerical value obtained from the discretized
conservation equations. As there are eight (8)
conservation equations to each cell, the maximum
value obtained from these equations is defined as
the residual of this cell. Thus, this residua is
compared with the residua of the other cells,
calculated of the same way, to define the maximum
residual in the domain. In the simulations, the attack
angle, o, was set equal to zero.

6.1 Initial conditions
The initial conditions to the standard simulation

of the studied algorithms are presented in Tab. 1.

This is a benchmark case to the flow submitted
to a magnetic field normal to the symmetry line
of the blunt body configuration. The Reynolds
number was cal culated from the data of [22].

Table 1. 3D initia conditions.

Property Value
M., 10.6
Byo 015T
iy 1.2566x10° T.m/A
oo, 1,000 ohm/m
Altitude 40,000 m
Pr 0.72
L (2D) 20m
Re, (2D) 1.6806x10°

6.2. Numerical results

6.2.1. Results with the [9] scheme to inviscid flow
in three-dimensions
Figures 1 and 2 present the pressure contours
caculated at the computationa domain to the
inviscid gas flow submitted to a magnetic field.
Figures 1 and 2 exhibit the solutions obtained with
the [9] scheme employing the artificial dissipation
models of [12] and [11], respectively. The pressure
field obtained by the [9] scheme employing the
dissipation model of [11] is more intense than that
obtained with the dissipation model of [12]. Good
symmetry properties are observed in both solutions.
Figures 3 and 4 show the Mach number contours
calculated at the computational domain by the [9]
scheme employing the artificial dissipation models
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of [12] and of [11], respectively. The Mach number
field obtained by the [9] scheme employing the
dissipation model of [11] is more intense. Good
symmetry properties are observed in both solutions.
The shock wave develops naturaly, passing from a
normal shock at the symmetry line to oblique shock
waves along the body and finishing in a Mach wave,
far from the geometry.

] ]

Figure 2 : Pressure Contours ([9]/[11]).

Figures 5 and 6 present the trandlational /
rotational temperature distributions calculated at the
computational domain. The [9] scheme with the
artificial dissipation model of [12] predicts a more
severe temperature field.

Figures 7 and 8 exhibit the contours of the By
component of the magnetic field vector determined
a the calculation domain. As can be observed, the
Bx component is negative at the geometry lower
surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
around the geometry. The solution presented by the
[9] scheme with the dissipation model of [11] is
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guantitatively more symmetrical than the respective
one obtained with the dissipation model of [12],
although the latter presents a more intense By
component field.

Figure 5 : Temperature Contours ([9]/[12]).

E-ISSN: 2224-2880

Edisson Savio De Goées Maciel, Amilcar Porto Pimenta

Figure 6 : Temperature Contours ([9]/[11]).

Figure 7 : B, Component of Magnetic Field ([9]/[12]).

Figure 8 : B, Component of Magnetic Field ([9]/[11]).

Figures 9 and 10 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
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initialy attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration.
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Figure 9 : Magnetic Field and Induction Lines ([9]/[12]).
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Figure 11 : -Cp Distributions.

Figure 11 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
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by the [9] scheme employing the dissipation model
of [11] is more severe than that obtained with the
dissipation model of [12], presenting a Cp peak at
the configuration nose bigger. Figure 12 presents the
distribution of the trandational / rotationa
temperature along the configuration symmetry line
or configuration stagnation line. As can be noted,
the dissipation models predict different shock wave
positions. [12] model predicts the shock wave at
1.60m ahead of the blunt body nose, while the [11]
model predicts the shock wave at 1.30m ahead of
the blunt body nose.
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Figure 12 : Shock Position by the Temperature profile.

6.2.2 Results with the [9] scheme to viscous flow
in three-dimensions

Figures 13 and 14 exhibit the pressure contours
calculated a the computational domain. The
pressure field obtained by the [9] scheme employing
the dissipation model of [12] is more intense than
that obtained with the dissipation model of [11],
with a behavior opposed to that observed in the
inviscid solution. Good symmetry properties are
observed in both solutions.

Figure 13 : Pressure Contours ([9]/[12]).
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Figure 14 : Pressure Contours ([9]/[11]).

Figures 15 and 16 show the Mach number
contours calculated at the computational domain by
the [9] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [9] scheme employing
the dissipation model of [11] is more intense. It is
important to note that both solutions present pre-
shock oscillation problems, being more critica
those observed in the solution with [11] model.
Good symmetry properties are observed in both
solutions.

Figure 15 : Mach Number Contours ([9]/[12]).

Figures 17 and 18 present the trandationa /
rotational temperature distributions calculated at the
computational domain. The [9] scheme with the
artificial dissipation model of [11] predicts a more
severe temperature field. This temperature field is
much more severe than that obtained by the inviscid
solution. The temperature peak occurs along the
rectilinear walls, by the development of the wall
heating due to the consideration of viscous effects.
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Figure 16 : Mach Number Contours ([9]/[11]).

| ]
L
| |

i

Figure 18 : Temperature contours ([9]/[11]).

Figures 19 and 20 exhibit the contours of the By
component of the magnetic field vector determined
a the calculation domain. As can be observed, the
Bx component is negative at the geometry lower
surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
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around the geometry. The solutions presented by the
[9] scheme with the dissipation models of [12] and
of [11] have meaningful numerical non-symmetry.
The dissipation model of [11] presents a By field
more intense.

Figure 19 : B, Component of Magnetic Field ([9]/[11]).

Figure 20 : B, Component of Magnetic Field ([9]/[11]).
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Figure 21 : Magnetic Field and Induction Lines ([9]/[12]).
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Figures 21 and 22 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration.
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Figure 23 : -Cp Distributions.

Figure 23 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
by the [9] scheme employing the dissipation model
of [11] is more severe than that obtained with the
dissipation model of [12], presenting bigger Cp
variation between the configuration nose and the
configuration rectilinear walls. Figure 24 presents
the distribution of the trandational / rotational
temperature along the configuration symmetry line
or configuration stagnation line. As can be noted,
the dissipation models predict different shock wave
positions. The [12] model predicts the shock wave
at 0.90m ahead of the blunt body nose, while the [11]
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model predicts the shock wave at 0.80m ahead of
the blunt body nose.
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Figure 24 : Shock Position by the Temperature Profile.
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6.2.3 Resultswith the [10] schemeto inviscid flow
in three-dimensions
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Figure 25 : Pressure Contours ([10]/[12]).

Figure 26 : Pressure Contours ([10]/[11]).
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Figure 25 and 26 present the pressure contours
calculated a the computational domain. The
pressure contours obtained by the [10] scheme
employing the dissipation model of [11] is more
intense than that obtained with the dissipation model
of [12]. Good symmetry properties are observed in
both solutions.

Figures 27 and 28 exhibit the Mach number
contours calculated at the computational domain by
the [10] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [10] scheme
employing the dissipation model of [11] is more
intense. Good symmetry properties are observed in
both solutions. The shock wave develops naturaly,
passing from a normal shock (frontal) to a Mach
wave, through oblique shock waves.

EERTE NS

Figure 27 : Mach Number Contours ([10]/[12]).

Figure 28 : Mach Number Contours ([10]/[11]).

Figures 29 and 30 show the trandationa /
rotational temperature distributions calculated at the
computational domain. The [10] scheme with the
artificial dissipation model of [12] predicts a more
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severe temperature field. This field is, however,
inferior in intensity to the respective one calculated
by the [9] scheme, asseenin Fig. 5.

Figure 29 : Temperature Contours ([10]/[12]).

Figure 30 : Temperature Contours ([10]/[11]).

Figure 31 : B, Component of Magnetic Field ([10]/[12]).

Figures 31 and 32 exhibit the contours of the By
component of the magnetic field vector determined
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at the calculation domain. As can be observed, the
Bx component is negative at the geometry lower
surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
around the geometry, equally observed in the
solutions with the [9] scheme. The solutions
presented by the [10] scheme with the dissipation
models of [12] and of [11] have good symmetry
properties. The latter solution presents a By field
more intense.

Figure 32 : B, Component of Magnetic Field ([10]/[11]).

Figures 33 and 34 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration. The
same behavior was observed in the inviscid
solutions obtained with the [9] scheme.

Figure 33 : Magnetic Field and Induction Lines ([10]/[12]).
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Figure 34 : Magnetic Field and Induction Lines ([10]/[11]).

Figure 35 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
by the [10] scheme employing both dissipation
models present the same intensity.
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Figure 35 : -Cp Distributions.
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Figure 36 : Shock Position by the Temperature Profile.
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Figure 36 presents the distribution of the
trandational / rotational temperature aong the
configuration symmetry line or configuration
stagnation line. As can be noted, the dissipation
models predict approximately the same shock wave
positions. The [11-12] models predict the shock
wave at 1.60m ahead of the blunt body nose.

6.2.4 Results with the [10] scheme to viscous flow
in three-dimensions

Figure 37 and 38 present the pressure contours
calculated a the computational domain. The
pressure contours obtained by the [10] scheme
employing the dissipation model of [12] is more
intense than that obtained with the dissipation model
of [11], opposed to the behavior observed in the
inviscid solution. Good symmetry properties are
observed in both solutions. This field is also more
intense than the respective one obtained with the [9]
scheme employing the same dissipation model.

||

Figure 38 : Pressure Contours (JM/M).
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Figure 39 : Mach Number Contours ([10]/[12]).

Figure 40 : Mach Number Contours ([10]/[11]).

Figure 41 : Temperature Contours ([10]/[12]).

Figures 39 and 40 exhibit the Mach number
contours calculated at the computational domain by
the [10] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [10] scheme
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employing the dissipation model of [11] is more
intense. It is important to note that both solutions
present problems of pre-shock oscillations, being
the [11] model solution as quantitatively more
critical. Good symmetry properties are observed in
both solutions.

Figures 41 and 42 show the trandational /
rotational temperature distributions calculated at the
computational domain. The [10] scheme with the
artificial dissipation model of [12] predicts a more
severe temperature field, much more severe than the
respective one obtained with the [9] scheme. This
field is much more severe than that obtained with
the inviscid solution of the present scheme. The
temperature peak occurs along the rectilinear walls,
by the development of the heating acting in these
walls, due to the consideration of viscous effects.
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Figure 43 : By Compnent of Magnetic Field ([10]/[12]).

Figures 43 and 44 exhibit the contours of the By
component of the magnetic field vector determined
a the calculation domain. As can be observed, the
By component is negative at the geometry lower
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surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
around the geometry. The solutions presented by the
[10] scheme with the dissipation models of [12] and
of [11] have meaningful symmetry properties. The
dissipation model of [11] presents a By field more
intense.

Figure 44 : B, Component of Magnetic Field ([10]/[11]).
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Figure 46 : Magnetic Field and Induction Lines ([10]/[11]).
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Figures 45 and 46 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration. The
same behavior was observed in the respective
solutions obtained with the [9] scheme.

Figure 47 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
by the [10] scheme employing the [11] dissipation
model is more severe than that obtained with the [12]
dissipation model, presenting bigger variation in the
Cp value between the nose and the rectilinear walls
of the blunt body.
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Figure 47 : -Cp Distributions.
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Figure 48 : Shock Position by the Temperature Profile.

Figure 48 presents the distribution of the
trandational / rotational temperature aong the
configuration symmetry line or configuration
stagnation line. As can be noted, the dissipation
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models predict the same shock wave positions. The
[12] model predicts the shock wave at 1.00m ahead
of the blunt body nose, while the [11] model
predicts the shock wave at 0.90m ahead of the blunt
body nose.

6.25 Effects over the shock wave standoff
distance due to the increase of the magnetic field
vector (B, component) to the inviscid simulations
in three-dimensions

To these studies, the [9] and the [10] schemes
employing the artificial dissipation operator of [11],
which has presented better characteristics of
pressure contour severity (-Cp distributions) and
shock wave standoff distance than the [12] modéel,
were analyzed. Variations of the B,. component
between values from 0.00T (without magnetic field
influence) until 0.55T, which has presented a
meaningful increase in the shock standoff distance,
were simul ated.

Figure 50 : Pressure Contours (B, = 0.55T).

Figures 49 and 50 exhibit the pressure contours
around the blunt body geometry, evaluated at the
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computational domain, calculated by the [9] scheme
with the dissipation model of [11], to the two
extreme cases By, = 0.00T and B, .. = 0.55T. Ascan
be observed, Fig. 49 presents the shock very close to
the configuration nose. Figure 50, however, exhibits
a shock wave more detached from the configuration
nose, which leads to atemperature field less intense,
reducing the heating from the configuration nose.

Figure 51 and 52 show the trandlational /
rotational temperature contours around the blunt
body geometry, to the two extreme cases By, =
0.00T and B, ., = 0.55T.

Figure 52 : Temperature Contours (B, .. = 0.55T).

As can be observed, the solution without the
magnetic field presents a normal shock attached to
the configuration nose, while the solution with the
maximum value of By, presents a shock wave more
detached from the blunt body nose. According to the
expected behavior, the temperature peak in this last
solution (with magnetic field different from zero) is
smaller than the respective temperature peak of the
solution without the influence of the magnetic field.
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This is the expected behavior because with bigger
shock standoff distance less the range of reached
temperatures. Hence, the [9] scheme agrees
faithfully with the results of [23-24].

Figure 53 exhibits the pressure aong the
stagnation line of the blunt body geometry. This
distribution serves to define the shock standoff
distance along the stagnation line. The graphic is
plotted with the non-dimensional pressures aong
the stagnation line as function of the x coordinate
along the symmetry line. As can be observed, as the
increase of the By, intensity is bigger, bigger is the
shock standoff distance in relation to the not
influence of the magnetic field.
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Figure 53 : Pressure Distributions at the Stagnation Line.

Table 2 exhibits the shock standoff distance to each
value of the By .. component.

Table 2 : Values of normal shock standoff distance
dueto variationsin By - [9].

By (T) Xshook (M)
0.00 1.9322
0.05 1.9322
0.15 1.9322
0.25 2.5763
0.35 2.2542
0.45 2.2542
0.55 2.8983

It is possible to conclude from this table that the
biggest shock standoff distance occurs to the
maximum studied magnetic field intensity, By, =
0.55T, corresponding to a distance of 2.8983m.
These qualitative results accords with the literature:
[23-24].

Figures 54 and 55 exhibit the pressure contours
around the blunt body configuration, evaluated at
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the computational domain, calculated by the [10]
scheme with the dissipation model of [11], to the
two extreme cases By, = 0.00T and By, = 0.55T.
As can be observed, Fig. 54 presents the shock
attached to the blunt body nose. Figure 55 shows the
shock more detached from the configuration nose,
which leads to a less intense temperature field,
reducing the heating at the nose.

Figure 55 : Pressure Contours (B .. = 0.55T).

Figure 56 and 57 present the trandational /
rotational temperature contours around the blunt
body geometry. As can be observed, the solution
without the influence of a magnetic field presents a
normal shock attached to the configuration nose,
while the solution with the maximum value of By
presents a shock more detached from the blunt body
nose. As expected behavior, the temperature peak in
the latter solution (with a magnetic field different
from zero) is less than the respective temperature
peak of the solution without the influence of a
magnetic field, which accords with the theory
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because with bigger shock standoff distance, less the
temperature ranges reached by the flow. With it, the
[10] scheme presents the correct evaluation of the
temperature field. By this analyze, areduction in the
heating of the configuration nose as submitted to a
magnetic field more intense is obtained.

Figure 57 : Temperature Contours (B, = 0.55T).

Figure 58 exhibits the pressure distribution along
the stagnation line of the blunt body geometry. This
distribution serves to define the shock standoff
distance along the stagnation line. The graphic is
plotted with the non-dimensional pressures at the
stagnation line as function of the x coordinate along
the symmetry line. As can be observed, as the By,
intensity increases, bigger shock standoff distance
occurs in relation to the condition of flow without
the magnetic field influence. Table 3 presents the
shock standoff distance to each value of By.. It is
possible to conclude from this table that the biggest
normal shock standoff distance occurs to the
maximum studied magnetic field intensity of By, =
0.55T, corresponding to a distance of 2.5763m.
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These qualitative results accord to the literature:

[23-24].
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Figure 58 : Pressure Distributions at the Stagnation Line.

Table 3 ; Vaues of the normal shock standoff
distance due to variationsin By - [10].

By (T) Xshock (M)
0.00 1.9322
0.05 1.9322
0.15 2.2542
0.25 2.2542
0.35 2.2542
0.45 2.2542
0.55 2.5763

As can be observed, the [10] scheme employing
the artificial dissipation model of [11] has presented
the solutions more accurate and more consistent,
serving as the reference algorithm to this study.

6.3 Computational the
studied algorithms

Table 4 presents the computational data of the
simulations with magnetic field influence over a
blunt body configuration in three-dimensions. The
table shows the studied cases, the CFL number of
the simulations, the iterations to convergence and
the values of k, and k, employed in each simulation.
The major cases converged in four (4) orders of
reduction of the maximum residual. The distribution
of the CFL number was as follows: 0.5 in two cases
(25.00%), 0.3 in two cases (25.00%), 0.2 in three
cases (37.50%) and 0.1 in one case (12.50%). The
maximum number of iterations to convergence
reached less than 30,100 iterations, with the solution
of the [9] scheme employing the dissipation model
of [11]. In cases in which the [10] scheme was
employed, the number of iterations to convergence

performance of
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was inferior to 5,000. The [9] scheme needed to
employ the value of 0.75 to the k, coefficient
(stability in presence of shock waves) in two cases
to obtain convergence. viscous case with the
dissipation models [11-12]. The [10] scheme needed
to use the value 0.75 to k, coefficient in one case:
viscous case with [11] dissipation model. It is
important to emphasize that all viscous simulations
were considered laminar, without the introduction of
a turbulence model, although a raised Reynolds
number was employed in the simulations.

Table 4. Computational datafrom the blunt
body simulations.

Studied case | CFL | lterations Ko/ Kqa
19911 | o3 1,443 0.50/0.01
v@rnonia | oa 30,010 0.75/0.01
1/[9]/[12] 0.3 2,822 0.50/0.01
V/[9]/[12] 0.2 4,039 0.75/0.01
1/[10]/[11] 0.5 3,445 0.50/0.01
V/[10]/[11] | 0.2 4,737 0.75/0.01
1/[10]/[12] 0.5 2,998 0.50/0.01
V/[101/[12] | 0.2 3,699 0.50/0.01

D Inviscid; @: Viscous.

Table 5. Computational costs of the structured
schemes of [9] and [10].

Studied case Computational cost®
Inviscid/[9]/[12] 0.0004878
Viscous/[9]/[12] 0.0005889
Inviscid/[9)/[11] 0.0005217
Viscous/[9)/[ 1] 0.0006341
Inviscid/[10]/[12] 0.0011975
Viscous/[10)/[12] 0.0023405
Inviscid/[10]/[11] 0.0013678
Viscous/[10]/[ 1] 0.0025679

@ Measured in seconds/per iteration/per computational cell.

Table 5 presents the computational costs of the
[9] and of [10] schemes in the formulation which
considers the influence of the magnetic field,
employing the artificial dissipation models of [11]
and of [12]. This cost is evaluated in seconds/per
iteration/per computational cell. The costs were
calculated employing a notebook with 2.13GHz of
clock and 1.0GBytes of RAM, in the Windows
Vista Starter environment. The cheapest algorithm
was the [9] scheme, in the inviscid simulation,
employing the [12] artificial dissipation model,
while the most expensive was the [10] scheme, in
the viscous simulation, employing the artificial
dissipation model of [11]. In relative percentage
terms, the former is 426.43% cheaper than the latter.
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The [10] algorithms are more expensive than the [9]
algorithms because the former calculates the flux at
interfaces by arithmetical average between the flux
vectors, while the latter employ the forward or
backward values in relation to the flux interface in

each predictor or corrector step, respectively,
dismissing the average calculations.

7 Conclusions

The present work amed to implement a

computational tool to simulation of inviscid and
viscous flows employing a magnetic field
formulation acting on a specific geometry. In this
study, the Euler and the Navier-Stokes equations
employing a finite volume formulation, following a
structured spatial discretization, were solved. The
aerospace problem of the hypersonic flow around a
blunt body geometry was simulated. A spatialy
variable time step procedure was employed aiming
to accelerate the convergence of the numerica
schemes to the steady state solution. Effective gains
in terms of convergence acceleration are observed
with thistechnique ([13-14]).

The study with magnetic field employed the [9]
and the [10] algorithms to perform the numerical
experiments. The [9] scheme is caculated by
forward and backward values to the convective flux
vectors at the flux interface, in the predictor and
corrector steps, respectively. The [10] scheme is
calculated by arithmetical average between the
convective flux vectors at the flux interface,
opposed to the arithmetical average between the
conserved variable vector. The viscous flux vectors
are caculated by arithmetical average of the
conserved variables and of the gradients. This
procedure to the viscous simulations is employed by
the [9] and by the [10] schemes. The results, mainly
those abtained with the [10] algorithm, are of good
quality. In particular, it was demonstrated the effect
that the imposition of a norma magnetic field in
relation to the symmetry line of a blunt body
geometry could cause the increase of the shock
standoff distance, reducing, hence, the aerodynamic
heating. This effect is important and can be explored
in the phases of aerospace vehicle project which
does reentry in the atmosphere normal to the earth
magnetic field. Another option would be the proper
vehicle generates an oscillatory electrical field to
yield a magnetic field in it and to induce the effect
of the increase of the shock standoff distance. These
are suggestions to verify.

The cheapest algorithm was the [9] scheme, in
the inviscid simulation, employing the [12]
dissipation model, while the most expensive was the
[10] scheme, in the viscous simulation, employing
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the artificial dissipation model of [11]. In relative
percentage terms, the former is 426.43% cheaper
than the latter. The [10] algorithms are more
expensive than the [9] agorithms because the
former calculates the inviscid flux at interfaces by
arithmetical average between the flux vectors, while
the latter employ the forward or backward valuesin
relation to the flux interface in each predictor or
corrector step, respectively, dismissing the average
calculations.
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